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Abstract 

The economy of design is a crucial factor in all engineering disciplines. In 
prestressed concrete structures, it is a challenge and a matter of competition 
among the engineers to lessen the weight of the structures and reach an 
optimum design. In the present work, a design procedure incorporating the 
generalized reduced gradient (GRG) method is used for optimization of 
prestressed concrete simple beams. The objective function is chosen to be the 
total materials’ cost of the structure, subject to strength and serviceability 
requirements as per the latest Egyptian Code Specifications. The basic design 
variables categorized into continuous and discrete variables. The continuous 
variables are the cross sectional-dimensions and the amount of prestressing 
steel. The discrete variables are steel and concrete strengths. The design 
constraints are strength in bending, strength in shear, ductility, minimum 
amounts of longitudinal and shear reinforcements, and deflection. Three 
examples of fully prestressed simple beams are presented to demonstrate the 
efficiency of the optimization technique. Different starting points are tested for 
each example. The obtained results show the accuracy and robustness of the 
technique. 
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Introduction 
 
The topic of optimum structural design has special importance on account of the 
motivation of all designers to attain the optimal product in terms of cost, weight, 
aesthetics, reliability or a combination of these factors. Optimization of 
prestressed concrete structures attracts great attention as they, usually consist of 
repeated units and have considerable economic advantage. 
 
A short review of previous researches on optimization of prestressed concrete 
structures is given in this section. Most of the work is based on ACI building 
code requirements. Sharaf El-Din, 2003, formulated a symmetrical prestressed 
concrete three-span beam as a mathematical programming problem and 
optimized using the Sequential Unconstrained Minimization Technique 
(SUMT). The beam was prismatic and had I-sections with predetermined 
concrete dimensions and known prestressing tendon configuration. The design 
variables considered in the optimization procedure included the prestressing 
force, tendon eccentricities, redistribution factors, and area of nonprestressing 
steel. The constraints were the flexural strength, ductility and serviceability. The 
formulation was based on ACI 318-89 requirements. The objective function was 
the total cost of the beam. 
 
Fereig, 1994 and 1996, used a linear programming optimization method to 
establish an optimal economic design chart and to obtain the mimimum 
prestressing force for bridges with prestressed I-girders. The objective function 
was to obtain the minimum required prestressing force, while the constraints 
were the design conditions that were based on the requirements of the AASHTO 
1992 specifications for the design of highway bridges. The solution satisfied the 
allowable working stress, ultimate strength, and limitations on reinforcement 
requirements. Shear strength, deflection, and other conditions did not control 
the girder selection and were checked independently. 
 
Cohn and Lounis, 1993, presented a broad formulation of the optimal design 
problem for continuous prestressed concrete beams that included structural 
collapse modes as possible ultimate-limit-state constraints along with other 
standard ultimate limit state and serviceability limit state requirements. The 
optimization approach enabled optimum designs based on ACI 318-89 building 
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code as well as optimum limit designs, to be done and to determine the 
feasibility of full redistribution designs for prestressed concrete structures. 
 
Salama, 1991, solved the optimization of simply supported prefabricated 
prestressed concrete beams using nonlinear programming techniques. The 
method of Fletcher and Powell was used in his work with an interior penalty 
function of Fiacco-Mccormik. The method of analysis used was mainly based 
on ACI 318-89 provisions. Beams with different spans were designed and 
clearly indicated that the benefit gained by the optimized weight reduction 
ranged from 5%-52%. 
 
Hassanain and Reda, 2002, introduced a rigorous and systematic procedure 
using mathematical optimization techniques for the design of high-performance 
concrete and fibre-reinforced polymers. The procedure was used to develop an 
optimization system that can be utilized to carry out cost effectiveness studies, 
and to develop preliminary design charts and guidelines according to the 
Canadian Highway Bridge Design Code Provisions. 
 
In this paper, a design procedure that is based on the latest Egyptian Code 
specifications ECC’01 (ECC’01 2001) is presented. A design procedure 
incorporating the GRG method is used for nonlinear optimization of prestressed 
concrete simple beams (Abadie and Carpentier 1969) and (Lasdon and Warren 
1978). The objective function considered is the total materials cost of the beam. 
This function is minimized subject to strength and serviceability requirements. 
The basic design variables considered in the optimization procedure are divided 
into continuous and discrete variables. The continuous variables are the cross-
sectional dimensions and the amount of prestressing and nonprestressing steels. 
The discrete variables are steel and concrete strengths. The design constraints 
are strengths in bending and shear, ductility, minimum amounts of longitudinal 
and shear reinforcements, and deflection. 
 
A computer program incorporating the design variables and constraints has been 
developed. The program assigns comprehensive sections that can be easily 
changed to rectangular, T-, inverted T- and I-sections. The properties of the 
mentioned sections are internally calculated. In the case of using other sections 
not assigned in the program, the user should assign all the required dimensions 
and section characteristics. 
 
Three examples of simply supported beams having different shapes of cross-
sections and spans are studied to verify the optimization technique. Three 
different starting points are applied for each example to clarify the efficiency of 
the optimization method. All results show improvements in the objective 
functions for all cases, with different starting points. 
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Analysis Problem 
 
Most structures are designed on trial-and-error basis. A preliminary design is 
estimated and analyzed. If it is satisfactory, it is considered a feasible design. If 
the trial design is not satisfactory, the designer has to change it and repeat the 
analysis until a feasible one is obtained. Usually, there are an infinite number of 
feasible designs, and the designers strive to find the optimal within the time they 
have available. 
 
A simple beam with span ‘L’ subject to uniformly distributed load is shown in 
Fig.(1). A comprehensive cross-section with the design variables is shown in 
Fig. (2). 
 

 

 

 

 

 

 

 

 

Fig. (1) Parabolic Tendon Profile for Simply Supported Beam 
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Fig. (2) Cross-Sectional Design Variables 
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For such beams, it is economical to use the largest possible eccentricity that can 
be accommodated within the cross-section, since it minimizes the required 
prestressing force. Therefore, the midspan eccentricity is given as a preassigned 
design value in this work. A parabolic tendon profile with zero eccentricity at 
the supports and the maximum possible eccentricity at midspan is shown in Fig. 
(1). Figure (3) summarizes the design process of simply supported prestressed 
concrete beams (Nilson 1978), (Lin and Burns 1981), and (Collins and Mitchell 
1991). 

Design Problem 

Choice of the Cross-Section and Material Properties 

 

 

 

 

� Preliminary choice of the overall member depth based 
on the typical span-to-depth ratios. 

� Determine the other cross-sectional dimensions. 
� Choose the tendon profile. 
� Calculate the member dead load,wD. 

 
Choice of Prestressing 
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Fig. (3) Design Procedures for Prestressed Concrete Beams 
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Formulation of the Optimal Design Problem 
 
The formulation of an optimal design problem requires identification of a set of 
design variables that describe the structure, design constraints that must be 
satisfied, and an objective function that measures the merits of alternate designs. 
The design variables, parameters and constraints are expressed in a suitable 
format for the application of GRG technique that is used in this study to find the 
optimum design of the prestressed concrete beams. 
 
Preassigned Parameters and Design Variables 
 
The preassigned parameters of the problem are the span length ‘L’, and the 
distance at midspan from the centroid of the beam to the centroid of the 
prestrening steel ‘e’. The centroid of the steel is at the centroid of the section at 
the span end. Additional design preassigned parameters are the characteristic 
concrete strength at transfer and at 28 days, the strength of prestressing steel and 
of nonprestressing steel reinforcement, the modulus of elasticity of the concrete 
and the concrete creep factor. The design variables are b1, b2, bw, t1, t2, h which 
define the cross-section dimensions and Aps, As, As’ which define the areas of 
prestressing and nonprestressing steel (see Fig.2 ). 
 
Design Constraints 
 
The optimum design of the prestressed concrete beams is the one with minimum 
cross-sectional area and material costs which satisfies all design constraints. 
Theses constraints in case of simple beams as per ECC’01 can be linearized and 
categorized in the following form: - 
 
1- Permissible Stresses in Concrete 
 
The ECC’01 specifies two stages namely (in case of simple beam); (see Fig. 4) 
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or 
 

 
(4) 

 
at bottom 
 

 (5) 

 
It should be mentioned here that, the elastic stresses at the span end will not be 
critical since the centroid of the prestressing steel is at the centroid of concrete 
section. 
 
 
 
 
 
 
 
 
 
 
 

(a) Cross-Section  (b) Unloaded Stage (c) Loaded Stage 
 

 
 
 
 

Fig.(4) Elastic Stresses in an Uncracked Prestressed Beam 
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F1 = The stress at top fiber (N/mm2), F2 = The stress at bottom fiber (N/mm2). 
i = Subscript denoted initial stage, s = Subscript denoted service stage. 
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3. Flexural Strength 
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4. Maximum Flexural Reinforcement (Ductility check) 
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6. Shear Strength 
 
The current version of the Egyptian Code requires that the value of fcu

0.5 used in 
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Calculation of qcu 
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7. Deflection 
 
The Egyptian Code requires that the deflections of prestressed concrete beams 
due to both short-term live loads and long-term dead loads and sustained live 
loads should be calculated. In calculating long-term camber and deflections, 
creep and shrinkage of the concrete and relaxation of the steel are to be taken 
into account. The computed deflections for simply supported prestressed 
concrete beams having parabolic tendon profile and subjected to uniformly 
distributed loads must not exceed the limits given by the following equations. 
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Objective Function 
 
The objective function ‘f’ is chosen to be the ratio of the total cost of the girder 
to the cost of concrete volume. A comprehensive survey for both national and 
international marketing prices shows that the ratio of the cost of prestressing 
tendons in tons to the cost of cubic meter of concrete is about 30. Therefore, the 
objective cost function is defined as follows: 

LA

LA
2341f          

c

ps ′
+=  (48) 

The above cost function is minimized under all relevant constraints given by 
Eqs. (1 to 47). It should be mentioned that, the total number of design variables 
is nine. However, the number of design constraints is twenty-three. 
 
 
The Generalized Reduced Gradient (GRG) Method 

 
The generalized reduced gradient (GRG) method is an extension of the reduced 
gradient method to accommodate nonlinear inequality constraints. In this 
method, a search direction is found, such that for any small move, the current 
active constraints remain precisely active. If some active constraints are not 
precisely satisfied due to nonlinearity of constraint functions, the Newton-
Raphson technique is used to return to the constraint boundary, Arora, Jasbir. 
S., (1989). 
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Abadie, J. and Carpentier, J., (1969) partition the design variable vector x, of n 
variables, as [yT , zT]T where y(n-p) and z(p) are vectors of independent and 
dependent design variables, respectively. First order changes in the objective 
and constraint functions (treated as equalities) are gives as 
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Any change in the variables must keep the current equalities satisfied at least to 
first order, i.e. ∆hi = 0. Therefore, Eq. (50) can be written in the matrix form as 
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Where columns of matrices A((n-p)xp) and B(pxp) contain gradients of equality 
constraints with respect to y and z. Eq. (51) can be viewed as the one that 
determines ∆z (change in the dependent variable vector) when ∆y (change in the 
independent variable vector) is satisfied. Substituting ∆z form Eq. (51) into Eq. 
(49), Then 
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For a trial step size α, the design variables are updated using ∆y = - α df/dy and 
∆z from Eq. (51). If the trial design is not feasible, then independent design 
variables are considered to be fixed and dependent variables are changed 
iteratively by applying the Newton-Raphson method until we get a feasible 
design point. If the new feasible design satisfies the descent condition, then line 
search is terminated; otherwise, the previous trial step size is discarded and the 
procedure is repeated with a reduced step size. 
 
Applications 
 
The generalized reduced gradient (GRG) nonlinear optimization method is 
utilized for design of several prestressed concrete beams. The optimization 
algorithm seeks a feasible solution, if one is not provided and then retains 
feasibility as the objective function is improved. A robust quasi-Newton 
algorithm is implemented for determining a search direction. Three simply 
supported beams subject to uniformly distributed load are investigated. These 
examples covered R-, T-, and I-sections. The beams have spans ranging from 
12000 mm to 35000 mm. Three different starting points are applied for each 
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example to demonstrate the robustness of the algorithm. The following 
subsections summarize the studied examples. 
 
Example 1 
 
A simple beam with span length 12000 mm and having a rectangular cross 
section is selected. The loads and material properties are shown in Fig. (5). 
Three different starting points have been applied. All starting points are 
convergencing to the same dimensions and objective function as illustrated in 
Table (1) and Fig. (6). The developments of h and Aps are shown in Fig. (7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (5) Simple Beam with Rectangular Cross Section (Example 1) 
 
 
 

Table (1) Starting and Optimum Dimensions (Example 1) 
 
 

Starting Point No. Sec. I II III 
b1 300 300 350 
h 700 900 1100 

Aps  518.2 356.02 236.74 
Optimum Values 

b1  250 250 250 
h  648.43 648.43 648.43 

Aps  492.45 492.45 492.45 
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fcui = 25 N/mm2 R = 0.85 
fcu = 40 N/mm2 ηp = 0.35 
fpu = 1770 N/mm2 kcr = 1.7 

dp=h-65 
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Fig. (6) Development of the Objective Function (Example 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (7) Development of the Design Variables (Example 1) 
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Example 2 
 
A simply supported beam having T-section and span of 20000 mm is shown in 
Fig. (8). The design variables for the different starting points are given in Table 
(2). The development and convergence of the objective function and design 
variables are illustrated in Figs. (9 and 10) and Table (2). It clearly shown that 
all starting points are minimized to the same value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (8) Simple Beam with T- Cross Section (Example 2) 
 
 
 

Table (2) Starting and Optimum Dimensions (Example 2) 
 

Starting Point No. Sec. I II III 
bw 300 350 400 
h 1800 2500 3500 
b1  1500 2000 2300 
t1  150 250 300 

Aps  1393.7 913.94 336.67 
Optimum Values 

bw  250 250 250 
h  2009.82 2009.87 2009.35 
b1 488.06 488.21 488.54 
t1  150 150 150 

Aps 1192.75 1192.81 1192.94 
 
 

L = 20000 mm 

wD = 12 N/mm, wL = 19 N/mm 

h 

b1 

dp 

bw fcui = 25 N/mm2 R = 0.85 
fcu = 40 N/mm2 ηp = 0.35 
fpu = 1770 N/mm2 kcr = 1.7 

dp=h-65 

t1 
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Fig. (9) Development of the Objective Function (Example 2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (10) Development of the Design Variables (Example 2) 
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Example 3 
 
Figure (11) shows a simple beam with a span of 35000 mm and has I-section. 
The concrete and steel strengths are shown in this figure. Figures (12 & 13) and 
Table (3) show the history of design variables and the objective function. From 
the observation of these figures, it can be concluded that all different starting 
points are optimized to the same value. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. (11) Simple Beam with I- Cross Section (Example 3) 
 
 

Table (3) Starting and Optimum Dimensions (Example 3) 
 

Starting Point No.  Sec. I II III 
bw 300 350 400 
h  2700 3000 3500 
b1  1700 2000 2200 
t1  200 200 250 
b2  700 900 1100 
t2  200 200 250 

Aps 5480.23 5136.45 4547.24 
Optimum Values 

bw 250 250 250 
h 4221.88 4221.88 4221.52 
b1 835.39 835.39 835.72 
t1 150 150 150 
b2 250 250 250 
t2  150 150 150 

Aps 3256.47 3256.46 3256.64 
 

L = 35000 mm 

wD = 15 N/mm, wL = 40 N/mm 

h 

b1 

dp 

t1 

bw 

t2 

b2 

fcui = 25 N/mm2 R = 0.85 
fcu = 40 N/mm2 ηp = 0.35 
fpu = 1770 N/mm2 kcr = 1.7 

dp=h-65 
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Fig. (12) Development of the Objective Function (Example 3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (13) Development of the Design Variables (Example 3) 
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Summary and Conclusions 
 
A design procedure incorporating the generalized reduced gradient method is 
utilized for optimization of prestressed concrete simple beams. The objective 
function considered is the total materials’ cost of the beam. This objective 
function is minimized subjected to strength and serviceability requirements 
according to the ECC’01. Three examples with span ranging from 12000 mm to 
35000 mm are studied to show the efficiency of the optimization technique. The 
beams having R-, T-, and I-sections. Three different starting points are applied 
for each example. The obtained results show that the minimization of the 
objective function is satisfied perfectly for all starting points. 
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NOMENCLATURE 
 
Major symbols are defined below while minor symbols are defined where used: 

Symbol Designation Units 
a 
Ac 
Aps 
As 
As` 

Ast 
b1 
c  
d  
 
dp  
 
d`  
 
e  
Ec 
Eci  
EP  
F1 
F2  
fcu  
 
fcui 

 
fctr 
fpci 

 
fpe 

 

Depth of equivalent rectangular stress block. 
Area of concrete at considered cross section. 
Area of prestressed reinforcement in tension Zone. 
Area of nonprestressed tension reinforcement. 
Area of nonprestressed compression reinforcement. 
Area of shear reinforcement within a distance s. 
Width of compression face of member. 
Distance from extreme compression fiber to the neutral axis. 
Distance from extreme compression fiber to the centroid of 
nonprestressed tension reionforcement. 
Distance from extreme compression fiber to the centroid of 
nonpresested compression reinforcement. 
Distance from extreme compression fiber to the centroid of non 
prestressed compression reinforcement. 
Prestress steel eccentricity. 
Modulus of elasticity of concrete after 28 days. 
Modulus of elasticity of concrete at time of presterss transfer. 
Modulus of elasticity of prestressing tendons. 
The stress at top fiber. 
The stress at bottom fiber. 
Characteristic compressive strength of standard concrete cube 
after 28 days. 
Characteristic compressive strength of standard concrete cube at 
time of prestress transfare. 
Specified ultimate cracking stress for concrete in tension. 
Primary stresses in concrete that contacted to the prestressing steel 
before time dependent losses have been occurred. 
Stress in prestressed reinforcement after allowance for all 
prestress losses. 

mm 
mm2 
mm2 
mm2 
mm2 

mm2 
mm 
mm 

 
mm 

 
mm 

 
mm 
mm 

N/mm2 
N/mm2 
N/mm2 
N/mm2 
N/mm2 

 
N/mm2 

 
N/mm2 

N/mm2 

 
N/mm2 

 
N/mm2 
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fps 
 
fpu 
fpy 
fy  
h 
Ic 
kcr 
L 
L’ 
MD 
ML 
M0 
Mu 

totalM   
 
M total  
pe  
 
Pi 
pj 
qci 

 
qcu  
qcw  
 
qd  
qp  
 
R  
 
s 
wD  
 
wd  
w0  
wL 
wu 
yt, yb 

 
γc 
γs   
 

γps  
∆fpe 
∆pi 
∆wo 
∆d 
∆L 

ρc   

Stress in prestressed reinforcement at ultimate strength of the 
cross section. 
Specified ultimate tensile strength of prestressing tendons. 
Specified yield strength of prestressing  tendons. 
Specified yield strength of nonprestressed reinforcement. 
Overall depth of concrete at the considered cross section. 
Moment of inertia of concrete at considered cross section. 
Creep factor for concrete. 
The span of the beam. 
The length of prestressing tendon. 
The bending moment at midspan due to dead load. 
The bending moment at midspan due to live load. 
The bending moment due to the self-weight of the member. 
The bending moment at midspan due to ultimate load. 
The bending moment due to all dead loads plus that due to any 
portion of the live load that may be considered sustained. 
The bending moment due to full service load. 
Effective prestressing tendon force after allowance for all 
prestress losses. 
Initial prestressing force after allowance for instantaneous losses. 
Prestressing jacking force. 
Normal shear strength provided by concrete when diagonal 
cracking results from combined shear and moment. 
Normal shear strength provided by concrete. 
Νοrmal shear strength provided by concrete when diagonal 
cracking results from excessive principal tensile stress in web. 
Shear stress at section due to unfactored dead load. 
 Shear stress provided by vertical component of effective prestress 
force at section considered. 
The effectiveness ratio (i.e. the percentage of Pi remaining after 
all time-dependent losses take place). 
Spacing of stirrups perpendicular to the axis of the member. 
Member dead load ,i.e. member self-weight plus superimposed 
dead load. 
Member superimposed dead load. 
Member self-weight load. 
Member live load. 
Member ultimate load. 
The distances between the concrete centroid and the top and 
bottom fibers of the cross-section, respectively. 
Strength reduction factor for concrete (γc = 1.5). 
Strength reduction factor for nonprestressed reinforcement 
(γs = 1.15). 
Strength reduction factor for prestressing tendons (γps = 1.15). 
Prestressing losses due to elastic shortening. 
Immediate camber due to the initial prestress. 
Immediate deflection due to member self-weight. 
Immediate deflection due to the superimposed dead load. 
Immediate deflection due to the live load. 
Concrete density. 

 
N/mm2 
N/mm2 
N/mm2 
N/mm2 

mm 
mm4 

 
mm 
mm 

N.mm 
N.mm 
N.mm 
N.mm 

 
N.mm 
N.mm 

 
N 
N 
N 

 
N/mm2 
N/mm2 

 
N/mm2 
N/mm2 

 
N/mm2 

 
 
 
 

N/mm 
N/mm 
N/mm 
N/mm 
N/mm 

 
mm 

 
 
 
 
 

N/mm2 

mm 
mm 
mm 
mm 

N/mm3 
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ρps 
ηp   

 
 
 

 
µ   
µ`  
µ” 
µ”min 
µp    
εcu   
εpu   
εpy 

Prestressing tendon density. 
Factor accounting for the shape of the stress-strain relationship of 
the prestressing steel. 

= 0.68, for fpy/fpu not less than 0.80 
= 0.50, for fpy/fpu not less than 0.85 
= 0.35 for fpy/fpu not less than 0.90 
 

 Ratio of non-prestressed tension reinforcement (=As/b1d). 
 Ratio of non-prestressed compression reinforcement (=As’/b1d). 
Shear reinforcement (=Ast/bw s) 
Minimum shear reinforcement. 
 

Ratio of prestressed reinforcement (=Aps/b1dp). 
Specified ultimate compressive strain of concrete. 
 Specified ultimate tensile strain of prestressing tendon. 
 Specified yield strain of prestressing tendons. 

N/mm3 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


